Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes
نویسندگان
چکیده
Illumina Infinium DNA Methylation BeadChips represent the most widely used genome-scale DNA methylation assays. Existing strategies for masking Infinium probes overlapping repeats or single nucleotide polymorphisms (SNPs) are based largely on ad hoc assumptions and subjective criteria. In addition, the recently introduced MethylationEPIC (EPIC) array expands on the utility of this platform, but has not yet been well characterized. We present in this paper an extensive characterization of probes on the EPIC and HM450 microarrays, including mappability to the latest genome build, genomic copy number of the 3΄ nested subsequence and influence of polymorphisms including a previously unrecognized color channel switch for Type I probes. We show empirical evidence for exclusion criteria for underperforming probes, providing a sounder basis than current ad hoc criteria for exclusion. In addition, we describe novel probe uses, exemplified by the addition of a total of 1052 SNP probes to the existing 59 explicit SNP probes on the EPIC array and the use of these probes to predict ethnicity. Finally, we present an innovative out-of-band color channel application for the dual use of 62 371 probes as internal bisulfite conversion controls.
منابع مشابه
Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip
Genome-wide analysis of DNA methylation has now become a relatively inexpensive technique thanks to array-based methylation profiling technologies. The recently developed Illumina Infinium MethylationEPIC BeadChip interrogates methylation at over 850,000 sites across the human genome, covering 99% of RefSeq genes. This array supersedes the widely used Infinium HumanMethylation450 BeadChip, whic...
متن کاملErratum: A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data
Aging is characterized by a profound remodeling of the epigenetic architecture in terms of DNA methylation patterns. To date the most effective tool to study genome wide DNA methylation changes is Infinium HumanMethylation450 BeadChip (Infinium 450k). Despite the wealth of tools for Infinium 450k analysis, the identification of the most biologically relevant DNA methylation changes is still cha...
متن کاملFastDMA: An Infinium HumanMethylation450 Beadchip Analyzer
DNA methylation is vital for many essential biological processes and human diseases. Illumina Infinium HumanMethylation450 Beadchip is a recently developed platform studying genome-wide DNA methylation state on more than 480,000 CpG sites and a few CHG sites with high data quality. To analyze the data of this promising platform, we developed FastDMA which can be used to identify significantly d...
متن کاملInfinium Monkeys: Infinium 450K Array for the Cynomolgus macaque (Macaca fascicularis)
The Infinium Human Methylation450 BeadChip Array (Infinium 450K) is a robust and cost-efficient survey of genome-wide DNA methylation patterns. Macaca fascicularis (Cynomolgus macaque) is an important disease model; however, its genome sequence is only recently published, and few tools exist to interrogate the molecular state of Cynomolgus macaque tissues. Although the Infinium 450K is a hybrid...
متن کاملA beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data
MOTIVATION The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017